Journal of Cancer Research and Therapeutics Close
 

Figure 4: The inhibition of reactive oxygen species suppresses selenocystine-induced cytotoxicity and apoptosis in JEG-3 cells. (a) Reactive oxygen species inhibition attenuated selenocystine-induced cytotoxicity. (b) Reactive oxygen species inhibition improved cell morphology in selenocystine-treated JEG-3 cells. Cells were pretreated with 5 mM glutathione for 2 h before selenocystine treatment. (c) Glutathione supplement blocked selenocystine-induced apoptosis in JEG-3 cells. Cells were pretreated with 5 mM glutathione for 2 h before selenocystine treatment. Cell apoptosis was detected by flow cytometry. (d) Reactive oxygen species elimination attenuated selenocystine-induced oxidative damage, S-phase arrest, and apoptosis

Figure 4: The inhibition of reactive oxygen species suppresses selenocystine-induced cytotoxicity and apoptosis in JEG-3 cells. (a) Reactive oxygen species inhibition attenuated selenocystine-induced cytotoxicity. (b) Reactive oxygen species inhibition improved cell morphology in selenocystine-treated JEG-3 cells. Cells were pretreated with 5 mM glutathione for 2 h before selenocystine treatment. (c) Glutathione supplement blocked selenocystine-induced apoptosis in JEG-3 cells. Cells were pretreated with 5 mM glutathione for 2 h before selenocystine treatment. Cell apoptosis was detected by flow cytometry. (d) Reactive oxygen species elimination attenuated selenocystine-induced oxidative damage, S-phase arrest, and apoptosis