Journal of Cancer Research and Therapeutics Close
 

Figure 3: Selenocystine triggers oxidative damage in JEG-3 cells. (a) Selenocystine caused reactive oxygen species and superoxide anion production. Cells were seeded in 6-well plate and treated with 20 μM selenocystine for 10, 30, and 60 min. After treatment, cells were preincubated with 10 μM dichlorodihydrofluorescein diacetate or dihydroethidium probe for detection of reactive oxygen species and superoxide anion, respectively. (b) Dose-dependent effects of selenocystine on DNA damage markers. Cells were treated with 0–40 μM selenocystine for 72 h. (c) Time-dependent effects of selenocystine on DNA damage markers. The protein expression was examined by western blotting method

Figure 3: Selenocystine triggers oxidative damage in JEG-3 cells. (a) Selenocystine caused reactive oxygen species and superoxide anion production. Cells were seeded in 6-well plate and treated with 20 μM selenocystine for 10, 30, and 60 min. After treatment, cells were preincubated with 10 μM dichlorodihydrofluorescein diacetate or dihydroethidium probe for detection of reactive oxygen species and superoxide anion, respectively. (b) Dose-dependent effects of selenocystine on DNA damage markers. Cells were treated with 0–40 μM selenocystine for 72 h. (c) Time-dependent effects of selenocystine on DNA damage markers. The protein expression was examined by western blotting method