Journal of Cancer Research and Therapeutics Close
 

Figure 1: (a) Optimization of tetra-primer amplification refractory mutation system-polymerase chain reaction. Lanes 2, 3, and 4 indicate the heterozygote, lanes 5, 6, and 7 wild-type homozygote (A allele) and 8, 9, and 10 single nucleotide polymorphism homozygote (G allele) genotypes. Each genotype was determined in 3 vials. (b) Optimization of multiples tetra-primer amplification refractory mutation system-polymerase chain reaction. Lanes 12–14 show the heterozygote, wild-type homozygote (A allele), and single nucleotide polymorphism homozygote (G allele), respectively. Each genotype was determined in multiplex manner. Lanes 1, 11, and 15 display the 50 bp DNA ladder. The polymerase chain reaction products length for control, wild type, and single nucleotide polymorphism bands were 469bp, 183bp, and 340bp, respectively

Figure 1: (a) Optimization of tetra-primer amplification refractory mutation system-polymerase chain reaction. Lanes 2, 3, and 4 indicate the heterozygote, lanes 5, 6, and 7 wild-type homozygote (A allele) and 8, 9, and 10 single nucleotide polymorphism homozygote (G allele) genotypes. Each genotype was determined in 3 vials. (b) Optimization of multiples tetra-primer amplification refractory mutation system-polymerase chain reaction. Lanes 12–14 show the heterozygote, wild-type homozygote (A allele), and single nucleotide polymorphism homozygote (G allele), respectively. Each genotype was determined in multiplex manner. Lanes 1, 11, and 15 display the 50 bp DNA ladder. The polymerase chain reaction products length for control, wild type, and single nucleotide polymorphism bands were 469bp, 183bp, and 340bp, respectively