Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 

    Article Cited by others

REVIEW ARTICLE

Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: Present status and future prospects

Dwarakanath B S, Singh Dinesh, Banerji Ajit K, Sarin Rajiv, Venkataramana N K, Jalali R, Vishwanath P N, Mohanti B K, Tripathi R P, Kalia V K, Jain Viney

Year : 2009| Volume: 5| Issue : 9 | Page no: 21-26

   This article has been cited by
 
1 Hexokinases in cancer and other pathologies
Dong Guo, Ying Meng, Xiaoming Jiang, Zhimin Lu
Cell Insight. 2023; : 100077
[Pubmed]  [Google Scholar] [DOI]
2 Enhanced Glycolysis Confers Resistance Against Photon but Not Carbon Ion Irradiation in Human Glioma Cell Lines
Mohit Vashishta, Vivek Kumar, Chandan Guha, Xiaodong Wu, Bilikere S Dwarakanath
Cancer Management and Research. 2023; Volume 15: 1
[Pubmed]  [Google Scholar] [DOI]
3 Metabolic Rewiring in Glioblastoma Cancer: EGFR, IDH and Beyond
Abdellatif El Khayari, Najat Bouchmaa, Bouchra Taib, Zhiyun Wei, Ailiang Zeng, Rachid El Fatimy
Frontiers in Oncology. 2022; 12
[Pubmed]  [Google Scholar] [DOI]
4 Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation
Isabell Goetting, Safa Larafa, Katharina Eul, Mikhail Kunin, Burkhard Jakob, Johann Matschke, Verena Jendrossek
Frontiers in Oncology. 2022; 12
[Pubmed]  [Google Scholar] [DOI]
5 Glucose transporters: Important regulators of endometrial cancer therapy sensitivity
Xing Zhang, Jia-Jing Lu, Ayitila Abudukeyoumu, Ding-Yu Hou, Jing Dong, Jiang-Nan Wu, Li-Bing Liu, Ming-Qing Li, Feng Xie
Frontiers in Oncology. 2022; 12
[Pubmed]  [Google Scholar] [DOI]
6 Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review
Maoyuan Zhao, Feng Wei, Guangwei Sun, Yueqiang Wen, Juyi Xiang, Fangting Su, Lu Zhan, Qing Nian, Yu Chen, Jinhao Zeng
Frontiers in Pharmacology. 2022; 13
[Pubmed]  [Google Scholar] [DOI]
7 A Network-Biology led Computational Drug repurposing Strategy to prioritize therapeutic options for COVID-19
Pankaj Khurana, Rajeev Varshney, Apoorv Gupta
Heliyon. 2022; : e09387
[Pubmed]  [Google Scholar] [DOI]
8 2-Deoxy-D-glucose increases the sensitivity of glioblastoma cells to BCNU through the regulation of glycolysis, ROS and ERS pathways: In vitro and in vivo validation
Xiaodong Sun, Tengjiao Fan, Guohui Sun, Yue Zhou, Yaxin Huang, Na Zhang, Lijiao Zhao, Rugang Zhong, Yongzhen Peng
Biochemical Pharmacology. 2022; 199: 115029
[Pubmed]  [Google Scholar] [DOI]
9 Synergistic effect of antimetabolic and chemotherapy drugs in triple-negative breast cancer
Elena López-Camacho, Lucía Trilla-Fuertes, Angelo Gámez-Pozo, Irene Dapía, Rocío López-Vacas, Andrea Zapater-Moros, María Isabel Lumbreras-Herrera, Pedro Arias, Pilar Zamora, Juan Ángel Fresno Vara, Enrique Espinosa
Biomedicine & Pharmacotherapy. 2022; 149: 112844
[Pubmed]  [Google Scholar] [DOI]
10 What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report
Mina Kim, Afroditi Eleftheriou, Luca Ravotto, Bruno Weber, Michal Rivlin, Gil Navon, Martina Capozza, Annasofia Anemone, Dario Livio Longo, Silvio Aime, Moritz Zaiss, Kai Herz, Anagha Deshmane, Tobias Lindig, Benjamin Bender, Xavier Golay
Magnetic Resonance Materials in Physics, Biology and Medicine. 2022;
[Pubmed]  [Google Scholar] [DOI]
11 Metabolic response to radiation therapy in cancer
Graham H. Read, Justine Bailleul, Erina Vlashi, Aparna H. Kesarwala
Molecular Carcinogenesis. 2021;
[Pubmed]  [Google Scholar] [DOI]
12 Metabolic perturbations in fibrosis disease
Chuin Ying Ung, Alexandros Onoufriadis, Maddy Parsons, John A. McGrath, Tanya J. Shaw
The International Journal of Biochemistry & Cell Biology. 2021; 139: 106073
[Pubmed]  [Google Scholar] [DOI]
13 Inhibition of glucose transport synergizes with chemical or genetic disruption of mitochondrial metabolism and suppresses TCA cycle-deficient tumors
Kellen Olszewski, Anthony Barsotti, Xiao-Jiang Feng, Milica Momcilovic, Kevin G. Liu, Ji-In Kim, Koi Morris, Christophe Lamarque, Jack Gaffney, Xuemei Yu, Jeegar P. Patel, Joshua D. Rabinowitz, David B. Shackelford, Masha V. Poyurovsky
Cell Chemical Biology. 2021;
[Pubmed]  [Google Scholar] [DOI]
14 Circle RNA circABCB10 Modulates PFN2 to Promote Breast Cancer Progression, as Well as Aggravate Radioresistance Through Facilitating Glycolytic Metabolism Via miR-223-3p
Yue Zhao, Rui Zhong, Chaoyue Deng, Zhenlin Zhou
Cancer Biotherapy and Radiopharmaceuticals. 2021; 36(6): 477
[Pubmed]  [Google Scholar] [DOI]
15 Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing
Alexander E. Kabakov, Anna O. Yakimova
Cancers. 2021; 13(5): 1102
[Pubmed]  [Google Scholar] [DOI]
16 Metabolic Plasticity and Combinatorial Radiosensitisation Strategies in Human Papillomavirus-Positive Squamous Cell Carcinoma of the Head and Neck Cell Lines
Mark D. Wilkie, Emad A. Anaam, Andrew S. Lau, Carlos P. Rubbi, Nikolina Vlatkovic, Terence M. Jones, Mark T. Boyd
Cancers. 2021; 13(19): 4836
[Pubmed]  [Google Scholar] [DOI]
17 Dual Hyaluronic Acid and Folic Acid Targeting pH-Sensitive Multifunctional [email protected]@MgO-Nano-Core–Shell-Radiosensitizer for Breast Cancer Therapy
Mostafa A. Askar, Noura M. Thabet, Gharieb S. El-Sayyad, Ahmed I. El-Batal, Mohamed Abd Elkodous, Omama E. El Shawi, Hamed Helal, Mohamed K. Abdel-Rafei
Cancers. 2021; 13(21): 5571
[Pubmed]  [Google Scholar] [DOI]
18 Metabolomics in cancer research and emerging applications in clinical oncology
Daniel R. Schmidt, Rutulkumar Patel, David G. Kirsch, Caroline A. Lewis, Matthew G. Vander Heiden, Jason W. Locasale
CA: A Cancer Journal for Clinicians. 2021; 71(4): 333
[Pubmed]  [Google Scholar] [DOI]
19 Metabolic Drivers of Invasion in Glioblastoma
Joseph H. Garcia, Saket Jain, Manish K. Aghi
Frontiers in Cell and Developmental Biology. 2021; 9
[Pubmed]  [Google Scholar] [DOI]
20 Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors
Seema Gupta, Bilikere S. Dwarakanath
Current Medicinal Chemistry. 2020; 27(24): 4002
[Pubmed]  [Google Scholar] [DOI]
21 Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress
Fernanda Antunes, Gustavo J. S. Pereira, Renata F. Saito, Marcus V. Buri, Mara Gagliardi, Claudia Bincoletto, Roger Chammas, Gian Maria Fimia, Mauro Piacentini, Marco Corazzari, Soraya Soubhi Smaili
Cells. 2020; 9(3): 640
[Pubmed]  [Google Scholar] [DOI]
22 Targeting metabolic dependencies in pediatric cancer
Sameer H. Issaq, Christine M. Heske
Current Opinion in Pediatrics. 2020; 32(1): 26
[Pubmed]  [Google Scholar] [DOI]
23 Stresses in the metastatic cascade: molecular mechanisms and therapeutic opportunities
Minhong Shen, Yibin Kang
Genes & Development. 2020; 34(23-24): 1577
[Pubmed]  [Google Scholar] [DOI]
24 MicroRNA-1291-5p Sensitizes Pancreatic Carcinoma Cells to Arginine Deprivation and Chemotherapy through the Regulation of Arginolysis and Glycolysis
Mei-Juan Tu, Zhijian Duan, Zhenzhen Liu, Chao Zhang, Richard J. Bold, Frank J. Gonzalez, Edward J. Kim, Ai-Ming Yu
Molecular Pharmacology. 2020; 98(6): 686
[Pubmed]  [Google Scholar] [DOI]
25 High expression of oxidative phosphorylation genes predicts improved survival in squamous cell carcinomas of the head and neck and lung
Mitchell Frederick, Heath D. Skinner, Sawad A. Kazi, Andrew G. Sikora, Vlad C. Sandulache
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
26 One-stop radiotherapeutic targeting of primary and distant osteosarcoma to inhibit cancer progression and metastasis using 2DG-grafted graphene quantum dots
Fu-I. Tung, Lu-Jun Zheng, Kai-Ting Hou, Chih-Sheng Chiang, Ming-Hong Chen, Tse-Ying Liu
Nanoscale. 2020; 12(16): 8809
[Pubmed]  [Google Scholar] [DOI]
27 Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms
Clotilde Laussel, Sébastien Léon
Biochemical Pharmacology. 2020; 182: 114213
[Pubmed]  [Google Scholar] [DOI]
28 A combinatorial approach of a polypharmacological adjuvant 2-deoxy-D-glucose with low dose radiation therapy to quell the cytokine storm in COVID-19 management
Amit Verma, Amitava Adhikary, Gayle Woloschak, Bilikere S. Dwarakanath, Rao V. L. Papineni
International Journal of Radiation Biology. 2020; 96(11): 1323
[Pubmed]  [Google Scholar] [DOI]
29 Metabolic characterization of aggressive breast cancer cells exhibiting invasive phenotype: impact of non-cytotoxic doses of 2-DG on diminishing invasiveness
Mayumi Fujita, Kaori Imadome, Veena Somasundaram, Miki Kawanishi, Kumiko Karasawa, David A. Wink
BMC Cancer. 2020; 20(1)
[Pubmed]  [Google Scholar] [DOI]
30 Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas
Han Shen, Kristina Cook, Harriet E. Gee, Eric Hau
Journal of Experimental & Clinical Cancer Research. 2020; 39(1)
[Pubmed]  [Google Scholar] [DOI]
31 Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice
Jane A. Branca, Benjamin E. Low, Ruth L. Saxl, Jennifer K. Sargent, Rosalinda A. Doty, Michael V. Wiles, Beth L. Dumont, Muneer G. Hasham
Genes & Cancer. 2020; 11(1-2): 83
[Pubmed]  [Google Scholar] [DOI]
32 Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review
Sajad Fakhri, Seyed Zachariah Moradi, Mohammad Hosein Farzaei, Anupam Bishayee
Seminars in Cancer Biology. 2020;
[Pubmed]  [Google Scholar] [DOI]
33 Co-delivery of 2-Deoxyglucose and a glutamine metabolism inhibitor V9302 via a prodrug micellar formulation for synergistic targeting of metabolism in cancer
Zhangyi Luo, Jieni Xu, Jingjing Sun, Haozhe Huang, Ziqian Zhang, Weina Ma, Zhuoya Wan, Yangwuyue Liu, Apurva Pardeshi, Song Li
Acta Biomaterialia. 2020; 105: 239
[Pubmed]  [Google Scholar] [DOI]
34 Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer
Kalpana Tilekar, Neha Upadhyay, Cristina V. Iancu, Vadim Pokrovsky, Jun-yong Choe, C.S. Ramaa
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2020; 1874(2): 188457
[Pubmed]  [Google Scholar] [DOI]
35 The contribution of ketone bodies to glycolytic inhibition for the treatment of adult and pediatric glioblastoma
Frederic A. Vallejo, Sumedh S. Shah, Nicolas de Cordoba, Winston M. Walters, Jeffrey Prince, Ziad Khatib, Ricardo J. Komotar, Steven Vanni, Regina M. Graham
Journal of Neuro-Oncology. 2020; 147(2): 317
[Pubmed]  [Google Scholar] [DOI]
36 Saccharide analog, 2-deoxy- d -glucose enhances 4-1BB-mediated antitumor immunity via PD-L1 deglycosylation
Bareun Kim, Ruoxuan Sun, Wonkyung Oh, Alyssa Min Jung Kim, Johann Richard Schwarz, Seung-Oe Lim
Molecular Carcinogenesis. 2020; 59(7): 691
[Pubmed]  [Google Scholar] [DOI]
37 Effect of Liposomal Encapsulation on the Chemical Exchange Properties of Diamagnetic CEST Agents
Eleni Demetriou, Harriet E. Story, Robin Bofinger, Helen C. Hailes, Alethea B. Tabor, Xavier Golay
The Journal of Physical Chemistry B. 2019; 123(35): 7545
[Pubmed]  [Google Scholar] [DOI]
38 The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose
Quentin Defenouillère, Agathe Verraes, Clotilde Laussel, Anne Friedrich, Joseph Schacherer, Sébastien Léon
Science Signaling. 2019; 12(597)
[Pubmed]  [Google Scholar] [DOI]
39 Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism
Wangie Yu, Yunyun Chen, Julien Dubrulle, Fabio Stossi, Vasanta Putluri, Arun Sreekumar, Nagireddy Putluri, Dodge Baluya, Stephen Y. Lai, Vlad C. Sandulache
Scientific Reports. 2018; 8(1)
[Pubmed]  [Google Scholar] [DOI]
40 Tumor metabolism regulating chemosensitivity in ovarian cancer
Chae Young Han, David A. Patten, Richard B. Richardson, Mary-Ellen Harper, Benjamin K. Tsang
Genes & Cancer. 2018; 9(5-6): 155
[Pubmed]  [Google Scholar] [DOI]
41 A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells
Akansha Jalota, Mukesh Kumar, Bhudev C. Das, Ajay K. Yadav, Kunzang Chosdol, Subrata Sinha
Oncotarget. 2018; 9(26): 18351
[Pubmed]  [Google Scholar] [DOI]
42 Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell Therapy
Tina Cascone, Jodi A. McKenzie, Rina M. Mbofung, Simone Punt, Zhe Wang, Chunyu Xu, Leila J. Williams, Zhiqiang Wang, Christopher A. Bristow, Alessandro Carugo, Michael D. Peoples, Lerong Li, Tatiana Karpinets, Lu Huang, Shruti Malu, Caitlin Creasy, Sara E. Leahey, Jiong Chen, Yuan Chen, Helen Pelicano, Chantale Bernatchez, Y.N. Vashisht Gopal, Timothy P. Heffernan, Jianhua Hu, Jing Wang, Rodabe N. Amaria, Levi A. Garraway, Peng Huang, Peiying Yang, Ignacio I. Wistuba, Scott E. Woodman, Jason Roszik, R. Eric Davis, Michael A. Davies, John V. Heymach, Patrick Hwu, Weiyi Peng
Cell Metabolism. 2018; 27(5): 977
[Pubmed]  [Google Scholar] [DOI]
43 Low dose of 2-deoxy-D-glucose kills acute lymphoblastic leukemia cells and reverses glucocorticoid resistance via N-linked glycosylation inhibition under normoxia
Ling Gu, Zhihui Yi, Yanle Zhang, Zhigui Ma, Yiping Zhu, Ju Gao
Oncotarget. 2017; 8(19): 30978
[Pubmed]  [Google Scholar] [DOI]
44 microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma
Ke Cao, Jingjing Li, Jia Chen, Li Qian, Aijun Wang, Xiang Chen, Wei Xiong, Jintian Tang, Shijie Tang, Yong Chen, Yao Chen, Yan Cheng, Jianda Zhou
Oncotarget. 2017; 8(48): 83660
[Pubmed]  [Google Scholar] [DOI]
45 Metabolic modulation of Ewing sarcoma cells inhibits tumor growth and stem cell properties
Atreyi Dasgupta, Matteo Trucco, Nino Rainusso, Ronald J. Bernardi, Ryan Shuck, Lyazat Kurenbekova, David M. Loeb, Jason T. Yustein
Oncotarget. 2017; 8(44): 77292
[Pubmed]  [Google Scholar] [DOI]
46 EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape
Seung-Oe Lim, Chia-Wei Li, Weiya Xia, Heng-Huan Lee, Shih-Shin Chang, Jia Shen, Jennifer L. Hsu, Daniel Raftery, Danijel Djukovic, Haiwei Gu, Wei-Chao Chang, Hung-Ling Wang, Mong-Liang Chen, Longfei Huo, Chung-Hsuan Chen, Yun Wu, Aysegul Sahin, Samir M. Hanash, Gabriel N. Hortobagyi, Mien-Chie Hung
Cancer Research. 2016; 76(5): 1284
[Pubmed]  [Google Scholar] [DOI]
47 Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1
Regina M Graham, Fiorela Hernandez, Nataly Puerta, Guillermo De Angulo, Keith A Webster, Steven Vanni
Experimental & Molecular Medicine. 2016; 48(2): e210
[Pubmed]  [Google Scholar] [DOI]
48 Targeting glucose metabolism in cancer: a new class of agents for loco-regional and systemic therapy of liver cancer and beyond?
Lynn Jeanette Savic, Julius Chapiro, Gregor Duwe, Jean-François Geschwind
Hepatic Oncology. 2016; 3(1): 19
[Pubmed]  [Google Scholar] [DOI]
49 Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA
Aik T. Ooi, Brigitte N. Gomperts
Clinical Cancer Research. 2015; 21(11): 2440
[Pubmed]  [Google Scholar] [DOI]
50 Identification of the determinants of 2-deoxyglucose sensitivity in cancer cells by shRNA library screening
Hiroki Kobayashi, Haruna Nishimura, Ken Matsumoto, Minoru Yoshida
Biochemical and Biophysical Research Communications. 2015; 467(1): 121
[Pubmed]  [Google Scholar] [DOI]
51 PARP and other prospective targets for poisoning cancer cell metabolism
Judith Michels,Florine Obrist,Maria Castedo,Ilio Vitale,Guido Kroemer
Biochemical Pharmacology. 2014;
[Pubmed]  [Google Scholar] [DOI]
52 Overcoming 5-Fu resistance in human non-small cell lung cancer cells by the combination of 5-Fu and cisplatin through the inhibition of glucose metabolism
Jun-gang Zhao,Kai-ming Ren,Jun Tang
Tumor Biology. 2014;
[Pubmed]  [Google Scholar] [DOI]
53 Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose
Michal Rivlin,Ilan Tsarfaty,Gil Navon
Magnetic Resonance in Medicine. 2014; : n/a
[Pubmed]  [Google Scholar] [DOI]
54 Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation
Rainer J. Klement,Colin E. Champ
Cancer and Metastasis Reviews. 2014;
[Pubmed]  [Google Scholar] [DOI]
55 Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death
Xiaolan Feng,Yi Zhang,Pan Wang,Quanhong Liu,Xiaobing Wang
Photochem. Photobiol. Sci.. 2014; 13(12): 1793
[Pubmed]  [Google Scholar] [DOI]
56 Investigational cancer drugs targeting cell metabolism in clinical development
Douglas W Sborov,Bradley M Haverkos,Pamela J Harris
Expert Opinion on Investigational Drugs. 2014; : 1
[Pubmed]  [Google Scholar] [DOI]
57 Upregulation of glucose metabolism by NF- B2/p52 mediates enzalutamide resistance in castration-resistant prostate cancer cells
Y. Cui,N. Nadiminty,C. Liu,W. Lou,C. T. Schwartz,A. C. Gao
Endocrine Related Cancer. 2014; 21(3): 435
[Pubmed]  [Google Scholar] [DOI]
58 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy
Dongsheng Zhang,Juan Li,Fengzhen Wang,Jun Hu,Shuwei Wang,Yueming Sun
Cancer Letters. 2014;
[Pubmed]  [Google Scholar] [DOI]
59 Targeting pyruvate kinase M2 contributes to radiosensitivity of non-small cell lung cancer cells in vitro and in vivo
Mao-Bin Meng,Huan-Huan Wang,Wen-Hao Guo,Zhi-Qiang Wu,Xian-Liang Zeng,Nicholas G. Zaorsky,Hua-Shan Shi,Dong Qian,Zhi-Min Niu,Bo Jiang,Lu-Jun Zhao,Zhi-Yong Yuan,Ping Wang
Cancer Letters. 2014;
[Pubmed]  [Google Scholar] [DOI]
60 Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI
Fatima A Nasrallah,Guilhem Pagès,Philip W Kuchel,Xavier Golay,Kai-Hsiang Chuang
Journal of Cerebral Blood Flow & Metabolism. 2013; 33(8): 1270
[Pubmed]  [Google Scholar] [DOI]
61 Metabolic targets for cancer therapy
Lorenzo Galluzzi,Oliver Kepp,Matthew G. Vander Heiden,Guido Kroemer
Nature Reviews Drug Discovery. 2013; 12(11): 829
[Pubmed]  [Google Scholar] [DOI]
62 Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI
Michal Rivlin,Judith Horev,Ilan Tsarfaty,Gil Navon
Scientific Reports. 2013; 3
[Pubmed]  [Google Scholar] [DOI]
63 Berberine combined with 2-deoxy-d-glucose synergistically enhances cancer cell proliferation inhibition via energy depletion and unfolded protein response disruption
Li-xia Fan,Chang-mei Liu,An-hui Gao,Yu-bo Zhou,Jia Li
Biochimica et Biophysica Acta (BBA) - General Subjects. 2013; 1830(11): 5175
[Pubmed]  [Google Scholar] [DOI]
64 miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells
Shiguang Zhao,Huailei Liu,Yaohua Liu,Jianing Wu,Chunlei Wang,Xu Hou,Xiaofeng Chen,Guang Yang,Ling Zhao,Hui Che,Yunke Bi,Hongyu Wang,Fei Peng,Jing Ai
Cancer Letters. 2013; 333(2): 253
[Pubmed]  [Google Scholar] [DOI]
65 Optimization of Tumor Radiotherapy With Modulators of Cell Metabolism: Toward Clinical Applications
Pierre Danhier,Christophe J. De Saedeleer,Oussama Karroum,Géraldine De Preter,Paolo E. Porporato,Bénédicte F. Jordan,Bernard Gallez,Pierre Sonveaux
Seminars in Radiation Oncology. 2013; 23(4): 262
[Pubmed]  [Google Scholar] [DOI]
66 NaBH3CN and other systems as substitutes of tin and silicon hydrides in the light or heat-initiated reduction of halosugars: a tunable access to either 2-deoxy sugars or 1,5-anhydro-itols
Isabelle Bruyère,Zoltan Tóth,Hamida Benyahia,Jia Lu Xue,Jean-Pierre Praly
Tetrahedron. 2013; 69(46): 9656
[Pubmed]  [Google Scholar] [DOI]
67 Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death
Cheng, G., Zielonka, J., Dranka, B.P., McAllister, D., Mackinnon Jr., A.C., Joseph, J., Kalyanaraman, B.
Cancer Research. 2012; 72(10): 2634-2644
[Pubmed]  [Google Scholar]
68 Jc virus t-antigen regulates glucose metabolic pathways in brain tumor cells
Noch, E., Sariyer, I.K., Gordon, J., Khalili, K.
PLoS ONE. 2012; 7(4): art-35054
[Pubmed]  [Google Scholar]
69 Targeting cancer metabolism - Aiming at a tumouræs sweet-spot
Jones, N.P., Schulze, A.
Drug Discovery Today. 2012; 17(5-6): 232-241
[Pubmed]  [Google Scholar]
70 Finding a Panacea among Combination Cancer Therapies
Ryuji Yamaguchi, Guy Perkins
Cancer Research. 2012; 72(1): 18
[Pubmed]  [Google Scholar] [DOI]
71 Mitochondria-Targeted Drugs Synergize with 2-Deoxyglucose to Trigger Breast Cancer Cell Death
Gang Cheng, Jacek Zielonka, Brian P. Dranka, Donna McAllister, A. Craig Mackinnon, Joy Joseph, Balaraman Kalyanaraman
Cancer Research. 2012; 72(10): 2634
[Pubmed]  [Google Scholar] [DOI]
72 Molecular Pathways: Tumor Cells Co-opt the Brain-Specific Metabolism Gene CPT1C to Promote Survival
Patrick T. Reilly, Tak W. Mak
Clinical Cancer Research. 2012; 18(21): 5850
[Pubmed]  [Google Scholar] [DOI]
73 Targeting Hypoxia, HIF-1, and Tumor Glucose Metabolism to Improve Radiotherapy Efficacy
Tineke W.H. Meijer, Johannes H.A.M. Kaanders, Paul N. Span, Johan Bussink
Clinical Cancer Research. 2012; 18(20): 5585
[Pubmed]  [Google Scholar] [DOI]
74 Oncogenic Viruses and Tumor Glucose Metabolism: Like Kids in a Candy Store
Evan Noch, Kamel Khalili
Molecular Cancer Therapeutics. 2012; 11(1): 14
[Pubmed]  [Google Scholar] [DOI]
75 Caloric Restriction Mimetic 2-Deoxyglucose Antagonizes Doxorubicin-induced Cardiomyocyte Death by Multiple Mechanisms
Kai Chen, Xianmin Xu, Satoru Kobayashi, Derek Timm, Tyler Jepperson, Qiangrong Liang
Journal of Biological Chemistry. 2011; 286(25): 21993
[Pubmed]  [Google Scholar] [DOI]
76 Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms
Chen, K., Xu, X., Kobayashi, S., Timm, D., Jepperson, T., Liang, Q.
Journal of Biological Chemistry. 2011; 286(25): 21993-22006
[Pubmed]  [Google Scholar]
77 Towards Tailored therapy of glioblastoma multiforme
Rekers, N.H., Sminia, P., Peters, G.J.
Journal of Chemotherapy. 2011; 23(4): 187-199
[Pubmed]  [Google Scholar]
78 Targeting target cancer metabolism what is fuelling the resurgence?
Jones, N.P.
Drug Discovery World. 2011; 12(4): 64-75
[Pubmed]  [Google Scholar]
79 Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells
Vlad C. Sandulache, Thomas J. Ow, Curtis R. Pickering, Mitchell J. Frederick, Ge Zhou, Izabela Fokt, Melinda Davis-Malesevich, Waldemar Priebe, Jeffrey N. Myers
Cancer. 2011; : n/a
[HTML Full text]  [Google Scholar] [DOI]
80 Individualizing antimetabolic treatment strategies for head and neck squamous cell carcinoma based on TP53 mutational status
Vlad C. Sandulache, Heath D. Skinner, Thomas J. Ow, Aijun Zhang, Xuefeng Xia, James M. Luchak, Lee-Jun C. Wong, Curtis R. Pickering, Ge Zhou, Jeffrey N. Myers
Cancer. 2011; : n/a
[HTML Full text]  [Google Scholar] [DOI]
81 Glycolysis inhibition by 2-deoxy-d-glucose reverts the metastatic phenotype in vitro and in vivo
Joseph L. Sottnik, Janet C. Lori, Barbara J. Rose, Douglas H. Thamm
Clinical & Experimental Metastasis. 2011;
[HTML Full text]  [Google Scholar] [DOI]
82 Targeting cancer metabolism – aiming at a tumouræs sweet-spot
Neil P. Jones, Almut Schulze
Drug Discovery Today. 2011;
[HTML Full text]  [Google Scholar] [DOI]
83 Is the restricted ketogenic diet a viable alternative to the standard of care for managing malignant brain cancer?
Thomas N. Seyfried, Jeremy Marsh, Laura M. Shelton, Leanne C. Huysentruyt, Purna Mukherjee
Epilepsy Research. 2011;
[HTML Full text]  [Google Scholar] [DOI]
84 2-deoxy-D-glucose combined with ferulic acid enhances radiation response in non-small cell lung carcinoma cells
Bandugula Venkata Reddy, N. Rajendra Prasad
Central European Journal of Biology. 2011; 6(5): 743
[HTML Full text]  [Google Scholar] [DOI]
85 Multicentric gliomas misdiagnosed as metastatic tumors: One case report and literature review
Peng Wang, Ming-can Wu, Shi-jie Chen, Yong Yang, Guang-rui Zhao
Clinical Oncology and Cancer Research. 2010; 7(5): 317
[HTML Full text]  [Google Scholar] [DOI]
86 2-DG enhances chemosensitivity of breast cancer cells to adriamycin
Cheng, X., Liu, H., Fang, L., Su, F., Song, L.-L., Ma, L.-Y., Jiang, G.-J., (...), Jiang, Z.-W.
Chinese Pharmacological Bulletin. 2010; 26(10): 1371-1376
[Pubmed]  [Google Scholar]
87 Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma
Luo, X.-M., Zhou, S.-H., Fan, J.
Journal of International Medical Research. 2010; 38(6): 1885-1892
[Pubmed]  [Google Scholar]

 

Read this article