Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 2  |  Page : 297-303

Quick, efficient and effective patient-specific intensity-modulated radiation therapy quality assurance using log file and electronic portal imaging device


1 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Mumbai, Maharashtra, India
2 Department of Medical Physics, Ex-Memorial Sloan Kettering Cancer Centre, New York, USA
3 Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, USA

Correspondence Address:
Rajesh Kumar
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai - 400 094, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jcrt.JCRT_1045_16

Rights and Permissions

Aim: The aim of work is to explore a quick, efficient, and effective patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA). Materials and Methods: Software tools were developed to extract and analyze the multi-leaf collimator (MLC) leaf positions (LPs) from electronic portal imaging device (EPID) images for Varian C-series machine and TrueBeam, to extract useful data from MLC log file of C-series linear accelerator (LINAC), to extract useful information from the trajectory log binary file of TrueBeam LINAC, to compare LPs derived from EPID images with log file/trajectory log data, and to analyze IMRT treatment files using the MATLAB programming language. The difference in LP determined from the trajectory log and EPID images was proposed for patient-specific QA. Results: It was found that the differences in LP for regular radiation fields generated using stationary leaves are <0.5 mm for all the field sizes while for regular radiation fields generated using the moving leaves are more but <2 mm. The differences in LPs for IMRT field were also determined and found to be <2 mm. Conclusions: The methodology demonstrated can be used for establishing the accuracy of trajectory log data and for independent routine IMRT QA by generating single number like gamma index to indicate pass or fail of an IMRT treatment plan. The QA indices such as numbers of occurrences of ≥2 mm error in LPS are found more than 5% of total number of occurrences; the dosimetric review of planned treatment is advisable.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3613    
    Printed62    
    Emailed0    
    PDF Downloaded203    
    Comments [Add]    
    Cited by others 3    

Recommend this journal