ORIGINAL ARTICLE |
|
Year : 2015 | Volume
: 11
| Issue : 6 | Page : 212-215 |
|
Genome-wide methylation profiling reveals new biomarkers for prognosis prediction of glioblastoma
Jiangong Ma1, Xin Hou2, Mingxuan Li1, Hongyu Ren1, Shumin Fang1, Xiaobin Wang1, Cheng He1
1 Department of Neurosurgery, The First Affiliated Hospital of Henan University, Kaifeng 475000, Henan Province, PR, China 2 Department of Oncology, The First Affiliated Hospital of Henan University, Kaifeng 475000, Henan Province, PR, China
Correspondence Address:
Cheng He Department of Neurosurgery, The First Affiliated Hospital of Henan University, Kaifeng 475000, Henan Province China
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1482.168188
|
|
Objective: To identify a specific hypermethylated molecular biomarker for human malignant glioblastoma prognosis.
Materials and Methods: Genome-wide methylation profiling was performed on 33 tumors and 3 normal glioblastoma samples using the Infinium HumanMethylation450 microarray. Cluster analysis was carried out in these samples according to the differentiated methylated genes. DNA methylation of selected significant candidates was subsequently validated to analyze the association of methylation status of these genes with overall survival as well as gene expression.
Results: We found 217 hypermethylated CpG sites located in 210 respective genes with significant differences in short- and long-term survival (STS and LTS) samples (P < 0.01). Cluster analysis revealed fine clustering of genes with LTS and STS. Of these, we selected 10 most hypermethylated genes, including IL11, RRAD, MS4A6A, SNAPC2, ALDH1A3, ADCY1, MMS19L, NDUFB8, POMC, and THSD4, to perform cluster analysis. It came out with the same fine classification and with survival time of these patients. The top ranking genes were further examined to compare their methylation status with the overall survival rate of patients, as well as with gene expression levels.
Conclusion: We obtained a featured global profiling of DNA methylation in glioblastoma. Our findings strongly indicate that epigenetic silencing of IL11, RRAD, MS4A6A, SNAPC2, and ALDH1A3 are common events in glioblastoma which could be used as novel biomarkers for the prognosis of glioblastoma. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|