ORIGINAL ARTICLE |
|
Year : 2012 | Volume
: 8
| Issue : 4 | Page : 610-618 |
|
Dosimetry parameters calculation of two commercial iodine brachytherapy sources using SMARTEPANTS with EPDL97 library
Navid Ayoobian1, Kamal Hadada2, Barry D Ganapol3
1 Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz, Iran 2 Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz, Iran; Department of Aerospace Mechanical Engineering, University of Arizona, Tucson AZ 3 Department of Aerospace Mechanical Engineering, University of Arizona, Tucson AZ
Correspondence Address:
Navid Ayoobian Department of Nuclear Engineering, College of Mechanical Engineering, Shiraz University, Shiraz Iran
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1482.106576
|
|
Aim: Simulating Many Accumulative Rutherford Trajectories Electron Photon and Neutral Transport Solver (SMARTEPANTS) is a discrete ordinates S N Boltzmann/Spencer-Lewis solver that was developed during 1988-1993 by William Filippone and his students. The code calculates particle fluxes, leakage currents as well as energy and charge deposition for coupled electron/photon in x-y-z geometries both in forward and in adjoin modes. Originally, SMARTEPANTS was designed to utilize CEPXS cross-section library for shielding calculation in satellite electronics. The aim of this study was to adapt SMARTEPANTS to use a new photon cross-section library from Evaluated Photon Data Library, 1997 version (EPDL97) for intravascular brachytherapy 125 Isimulations.
Materials and Methods: A MATLAB (MathworkNatick, Massachusetts) program was written to generate an updated multigroup-Legendre cross-section from EPDL97. The new library was confirmed by simulating intravascular brachytherapy Best® Model 2301 and Intersource 125 I dosimetry parameters using SMARTEPANTS with different energy groups (g), Legendre moments (L) and discrete ordinate orders (S).
Results: The dosimetry parameters for these sources were tabulated and compared with the data given by AAPM TG-43 and other reports. The computation time for producing TG-43 parameters was about 29.4 min in case of g = 20, L = 7 and S = 16.
Conclusion: The good agreement between the results of this study and previous reports and high computational speed suggest that SMARTEPANTS could be extended to a real-time treatment planning system for 125 I brachytherapy treatments. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|